対数の近似値 立命館 - 質問解決D.B.(データベース)

対数の近似値 立命館

問題文全文(内容文):
$\log_{10}7$を小数第2位まで求めよ.
$\log_{10}2=0.3010$,
$\log_{10}3=0.4771$

立命館大過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}7$を小数第2位まで求めよ.
$\log_{10}2=0.3010$,
$\log_{10}3=0.4771$

立命館大過去問
投稿日:2023.04.14

<関連動画>

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

大学入試問題#7 成城大学(2021) 対数の方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x \gt y \gt 0$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^{\frac{x}{y}+\frac{y}{x}}=32・・・① \\
log_3(x-y)+log_3(x+y)=1・・・②
\end{array}
\right.
\end{eqnarray}$ を解け。

出典:2021年成城大学 入試問題
この動画を見る 

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
この動画を見る 

19東京都採用試験(数学:対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣-(2)
$2^x=3^y=18^z={}^3\sqrt6$
(1)$\frac{1}{x} + \frac{1}{y}$
(2)$\frac{1}{x} - \frac{1}{y}+\frac{2}{z}$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$

関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。

$a > 0$, $b > 0$ のとき、不等式

$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$

を証明せよ。
この動画を見る 
PAGE TOP