整数問題 分数式 - 質問解決D.B.(データベース)

整数問題 分数式

問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
投稿日:2020.07.12

<関連動画>

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の不等式を証明せよ。また、等号が成立する条件を求めよ。
ただし、a,b,c,dは全て正の数であるとする。
(1) $\displaystyle \frac{a+b}{2} \geqq \sqrt{ab}$

(2) $\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$

(3) $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$
この動画を見る 

【数Ⅱ】中高一貫校用問題集(論理・確率編)式と証明:二項定理:21¹⁰を400で割った余りを求めよ。

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$21^{10}$を400で割った余りを求めよ。
この動画を見る 

ε-N論法 #2 lim 1/n^2=0

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
この動画を見る 
PAGE TOP