【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
チャプター:

0:00 問題概要
1:11 ③の証明
3:07 証明の解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
投稿日:2025.01.22

<関連動画>

福田のわかった数学〜高校3年生理系102〜大小比較(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
この動画を見る 

微分方程式⑦-4【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-5\dfrac{dx}{dt}+6x=\sin t$の一般解を求めよ.
(2)$\dfrac{d^2x}{dt^2}+9x=\cos 3t$の一般解を求めよ.
この動画を見る 

名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$

(1)
$S_{n}$は?

(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る 

東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。

$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$

(2)次の不等式を示せ。

$0.9999^{101}<0.99<0.9999^{100}$

東大過去問
この動画を見る 

微分方程式⑧-3【非同次2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る 
PAGE TOP