群馬大(医)漸化式 - 質問解決D.B.(データベース)

群馬大(医)漸化式

問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
投稿日:2020.07.06

<関連動画>

漸化式・対数の利用の融合問題 福井大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_{n+1}=\dfrac{a_n}{a_n+3},a_{11}$は小数点以下0でない数が初めて表れるのは小数第何位?

福井大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ (2)a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)で与えられる\\
数列\left\{a_n\right\}の一般項はa_n=\boxed{\ \ ア\ \ }である。また\sum_{n=1}^la_n \geqq 20\\
を満たす最小の自然数lは\boxed{\ \ イ\ \ }\ である。\hspace{75pt}
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

佐賀大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$a_1=1,a_{n+1}-2a_n-2n-3$

1987佐賀大過去問
この動画を見る 

【数学B/数列】数列の和 Σ(シグマ)の計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(1)
$\displaystyle \sum_{k=1}^n (3k+5)$

(2)
$\displaystyle \sum_{k=1}^n (k^2+2k+3)$
この動画を見る 
PAGE TOP