慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ - 質問解決D.B.(データベース)

慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ

問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
投稿日:2019.05.01

<関連動画>

【高校数学】数Ⅲ-9 複素数の図表示①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄に適する数や言葉をいれよう.

点$(\sqrt3+3i)z$は,点$z$を①を中心に②だけ回転し,
原点からの距離$\vert z \vert$を③倍したものである.

点$\sqrt5(-1+i)z$は,点$z$を④を中心に⑤だけ回転し,
原点からの距離$\vert z \vert$を⑥倍したものである.
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 

日本医科大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
この動画を見る 

九州大 COS7.5° 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z_1=\displaystyle \frac{1+i}{\sqrt{ 2 }},z_2=\displaystyle \frac{\sqrt{ 3 }+i}{2}$

(1)
$|z_1+z_2|$の値を求めよ

(2)
$\cos 7.5^{ \circ }$を求めよ

出典:1972年九州大学 過去問
この動画を見る 
PAGE TOP