整数問題の良問 - 質問解決D.B.(データベース)

整数問題の良問

問題文全文(内容文):
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
投稿日:2021.11.13

<関連動画>

「息抜き」整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a+3^b=n^2$を満たす自然数(a,b,n)は無限にあることを示せ。
$5^a+5^b=n^2$を満たす(a,b,n)はないことを示せ。
a,b,n自然数
この動画を見る 

東海大(医)えっ!そんなんでいいの?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n^3+100$が$n+10$で割り切れるような最大の自然数nを求めよ.
この動画を見る 

19神奈川県教員採用試験(数学:整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.

19神奈川県教員採用試験(数学:整数問題)過去問
この動画を見る 

イラン数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.

イラン数学オリンピック過去問
この動画を見る 

立命館大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ

出典:立命館大学 過去問
この動画を見る 
PAGE TOP