大学入試問題#897「解法の迷走」 #北海道大学(2024) - 質問解決D.B.(データベース)

大学入試問題#897「解法の迷走」 #北海道大学(2024)

問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。

出典:2024年北海道大学後期
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。

出典:2024年北海道大学後期
投稿日:2024.08.07

<関連動画>

息抜き 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る 

複号任意

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
この動画を見る 

福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数xについて、以下の設問に答えよ。
なお、ここでxの下一桁とはxを10で割った余りであり、
xの下二桁とはxを100で割った余りであるとする。
(1)$10 \leqq x \leqq 40$の範囲で、xn下一桁と$x^2$の下一桁が一致するようなxの個数を求めよ。
(2)$10 \leqq x \leqq 99$の範囲で、$x^2$の下一桁と$x^4$の下一桁が一致するxをすべて足した数を
Yとする。整数Yの下一桁を求めよ。
(3)$10 \leqq x \leqq 99$の範囲で、$x^2$の下二桁がxと等しいものをすべて求めよ。
この動画を見る 

整数問題 2通りの解法で

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$ 自然数
$7^{2n-1}+9^{2n-1}+47^{2n-1}$
は63の倍数であることを示せ。
この動画を見る 

【高校数学】整数の割り算~商と余りについての理解~ 5-5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,bは整数とする。aを5で割ると2余り、bを5で割ると4余る。
このとき、次の数を5で割ったときの余りを求めよ。

(1) a+b

(2) a-b

(3) ab
この動画を見る 
PAGE TOP