福田の数学〜円と直線が共有点をもつ条件は〜慶應義塾大学2023年商学部第1問(2)〜円と直線の位置関係 - 質問解決D.B.(データベース)

福田の数学〜円と直線が共有点をもつ条件は〜慶應義塾大学2023年商学部第1問(2)〜円と直線の位置関係

問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせんy=mxが共有点を持つとき、定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。

2023慶應義塾大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせんy=mxが共有点を持つとき、定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。

2023慶應義塾大学商学部過去問
投稿日:2023.11.25

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る 

気が付けば一瞬!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aの座標は?
*図は動画内参照
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(2)角θに関する方程式\hspace{280pt}\\
\cos 4θ=\cos θ\ \ \ \ \ \ \ (0\leqq θ\leqq \pi)\hspace{30pt}...①\hspace{180pt}\\
について考える。①を満たすθは小さい方から順に\hspace{160pt}\\
θ=0,\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi,\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi\hspace{180pt}\\
の4つである。一方、θが①を満たすとき、t=\cos θとおくとtは\hspace{104pt}\\
\boxed{\ \ ス\ \ }t^4 - \boxed{\ \ セ\ \ }t^2+\boxed{\ \ ソ\ \ }=t\hspace{30pt}...②\hspace{104pt}\\
を満たす。t=1,\cos \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\piは②の解なので、2次方程式\hspace{124pt}\\
\boxed{\ \ タ\ \ }t^2+\boxed{\ \ チ\ \ }t-1=0\hspace{174pt}\\
は\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\piを解にもつ。これより、\hspace{134pt}\\
\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi=\frac{\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }},\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi=-\frac{\sqrt{\boxed{\ \ ツ\ \ }}+\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}であることが分かる。
\end{eqnarray}
この動画を見る 

【高校数学】円と直線の交点【連立方程式の同値変形】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
x²+y²=4
y=3x-2
交点を求めよ

連立をするとき余計な解が出てきたことはありませんか?
なぜそういうことがおきるかを解説します!
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。(3)弦ABの長さが2になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。(3)弦ABの長さが2になるときのaの値を求めなさい。
この動画を見る 
PAGE TOP