きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】

問題文全文(内容文):
$n$を自然数とする。一個のさいころを$n$回投げ、出た目を順に$X_{1},X_{2}……,X_{n}$とし、$n$個の数の積$X_{1},X_{2}……,X_{n}$を$Y$とする。

(1)$Y$が5で割り切れる確率を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。一個のさいころを$n$回投げ、出た目を順に$X_{1},X_{2}……,X_{n}$とし、$n$個の数の積$X_{1},X_{2}……,X_{n}$を$Y$とする。

(1)$Y$が5で割り切れる確率を求めよ。
投稿日:2023.03.30

<関連動画>

【数学】確率の求め方間違っていませんか?確率の前提の話 後編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

この動画を見る 

確率 4STEP数A 136 確率の乗法定理【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

【数A】確率:高3 5月全統共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

福田のわかった数学〜高校1年生077〜場合の数(16)道順(3)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(16) 道順(3)\hspace{100pt}\\
AからBまでの最短経路は何通りあるか。(※図は動画参照)
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。\hspace{70pt}\\
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、\\
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、\\
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん\\
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、\\
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が\\
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、\\
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。\\
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。\\
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率\\
で毎回ランダムに出すものとする。また通常のじゃんけんのように\\
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。\\
\\
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、\\
ちょうど3回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
\\
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}\ である。
\end{eqnarray}
この動画を見る 
PAGE TOP