練習問題48 岡山大学2011 面積、極限 - 質問解決D.B.(データベース)

練習問題48 岡山大学2011 面積、極限

問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
投稿日:2021.08.17

<関連動画>

福田のわかった数学〜高校3年生理系023〜極限(23)関数の極限、三角関数の極限(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(3)
$\lim_{\theta \to 0}\displaystyle \frac{\tan\theta-\sin\theta}{\theta^3}$ を求めよ。
この動画を見る 

大学入試問題#392「よく見る積分!!!」 #東京理科大学2011 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ t \to \infty } \displaystyle \int_{0}^{t} x\ 2^{-x^2} dx$

出典:2011年東京理科大学 入試問題
この動画を見る 

【数Ⅲ】【関数と極限】次のものが収束するような実数xの値の範囲を求めよ。(1) 無限数列{(x²-2x)^n}(2) 無限級数Σ(x²-2x)^n

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものが収束するような実数 $x$ の値の範囲を求めよ。
$(1)$ 無限数列 $ \{ (x^2-2x)^n \}$
$(2)$ 無限級数 $\displaystyle \sum_{n=1}^\infty \{ (x^2-2x)^n \}$
この動画を見る 

福田のわかった数学〜高校3年生理系001〜極限(1)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

【高校数学】数Ⅲ-62 合成関数①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y$が$u$の関数で$y=g(u)$と表され、$u$が$x$の関数で$u=f(x)$と表されるとき、
$y$は$x$の関数で$y=g(f(x))$と表され、これを$f$と$g$の合成関数という。
また、$y=g(f(x))$を$y=①$と表す。

②$f(x)= 4x ^ 2 、g(x) = -\dfrac{1}{2} (x + 1)$であるとき、
合成関数$(gof)(x)、(fog)(x)$をそれぞれ求めなさい。
この動画を見る 
PAGE TOP