円に内接する四角形(数A 高校入試数学) - 質問解決D.B.(データベース)

円に内接する四角形(数A 高校入試数学)

問題文全文(内容文):
円に内接する四角形の性質について説明動画です
単元: #数学(中学生)#中3数学#数A#図形の性質#円#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係
指導講師: 数学を数楽に
問題文全文(内容文):
円に内接する四角形の性質について説明動画です
投稿日:2019.11.02

<関連動画>

福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$

2022立教学部経済学部過去問
この動画を見る 

気付けば一瞬!! 図形

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AF=?
*図は動画内参照

この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Kを3より大きい奇数とし、$l+m+n=K$を満たす正の奇数の組(l,m,n)
の個数Nを考える。ただし、例えば、$K=5$のとき、$(l,m,n)=(1,1,3)$
と$(l,m,n)=(1,3,1)$とは異なる組とみなす。
(1)$K=99$のとき、Nを求めよ。
(2)$K=99$のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を
求めよ。
(3)$N \gt K$を満たす最小のKを求めよ。

2022東北大学理系過去問
この動画を見る 

【数A】整数の性質:知らなきゃ解けない?整数の方程式の解法パターン!ab+2a+2b=41 (1<a<b:自然数)

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ab+2a+2b=41 (1<a<b:自然数)
をみたすa,bを求めよ
この動画を見る 

1729見て理系は嬉しいの?

アイキャッチ画像
単元: #数A#整数の性質
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
車のナンバープレートが1729やったら理系は喜ぶのか?に関して解説していきます。
この動画を見る 
PAGE TOP