福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(2)
関数$f(x),g(x)$は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式$f(x)=g(x)$は$a \leqq x \leqq b$
に実数解をもつことを示せ。
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(2)
関数$f(x),g(x)$は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式$f(x)=g(x)$は$a \leqq x \leqq b$
に実数解をもつことを示せ。
投稿日:2021.07.14

<関連動画>

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

福田のおもしろ数学401〜極限関数の個数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$f(x)=\displaystyle \lim_{n\to\infty} \dfrac{\tan^{2n+1}x-\tan^n x+1}{\tan^{2n+2}x+\tan^{2n}x+1}$

$\left(0\leqq x \lt \dfrac{\pi}{2}\right)$のグラフを描いて下さい。
この動画を見る 

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
この動画を見る 

福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)

$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る 

【極限の応用!】特殊な関数の極限の求め方を解説!【数学III】

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
特殊な関数の極限の求め方を解説します。
この動画を見る 
PAGE TOP