福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

問題文全文(内容文):
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
投稿日:2024.05.09

<関連動画>

東大医学部ベテランちが5浪TAWASHIに早稲田の数学の問題を解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
東大医学部のベテランちさんが、TAWASHIさんに早稲田大学の数学入試を解説します。

問題の解き方を理解しましょう!
この動画を見る 

2023京都大学 正五角形の一辺の長さ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos2\theta,\cos3\theta$を$\cos\theta$を用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.

2023京都大過去問
この動画を見る 

コメント欄はありがたい。本当に2秒で答えが出た

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.

2019横浜市立(医)過去問
この動画を見る 

弧度法を使う理由

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
弧度法を使う理由を解説していきます.
この動画を見る 

福田のわかった数学〜高校2年生062〜三角関数(1)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(1) 三角関数のグラフ
下の図は$y=a\sin(bx-c)$のグラフである。
$a,b,c,d$の値を求めよ。ただし、$a \gt 0,\ b \gt 0,\ 0 \lt c \lt 2\pi$
とする。(※図は動画参照)
この動画を見る 
PAGE TOP