大学入試問題#153 東京医科大学(2017) 微積の応用 - 質問解決D.B.(データベース)

大学入試問題#153 東京医科大学(2017) 微積の応用

問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
投稿日:2022.03.27

<関連動画>

数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る 

東大 ヨビノリ みたび登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'95東京大学過去問題
全ての正の実数にx,yに対し$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$が成り立つような実数kの最小値
この動画を見る 

近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。

早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
この動画を見る 

福田の数学〜接線と放物線で囲まれた面積3連発だ〜早稲田大学2023年社会科学部第1問〜接線と放物線で囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 曲線$y$=$ax^2$+$b$上に$x$座標が$p$である点Pをとり、点Pにおける接線を$l$とする。ただし、定数$a$,$b$は$a$>0, $b$>0とする。次の問いに答えよ。
(1)接線$l$の方程式を$a$,$b$,$p$を用いて表せ。
(2)接線$l$と曲線$y$=$ax^2$で囲まれた図形の面積Sを$a$,$b$を用いて表せ。
(3)接線$l$と曲線$y$=$ax^2$+$\frac{b}{2}$で囲まれた図形の面積をS'としたとき、S'をSを用いて表せ。
(4)接線$l$と曲線$y$=$ax^2$+$c$で囲まれた図形の面積をS''とする。S"=$\frac{S}{2}$のとき、$c$を$a$,$b$を用いて表せ。ただし、$b$>$c$とする。
この動画を見る 
PAGE TOP