【数C】【複素数平面】複素数と図形10 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形10 ※問題文は概要欄

問題文全文(内容文):
複素数平面上の異なる3点O(0)、A(α)、B(β)について、次の等式が成り立つとき、三角形OABはどのような三角形か。
(1)α²+β²=0
(2)α²-2αβ+2β²=0
チャプター:

0:00 オープニング
0:04 この問題の方針
1:11 (1)の解説!
4:21 (2)の解説!
7:30 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる3点O(0)、A(α)、B(β)について、次の等式が成り立つとき、三角形OABはどのような三角形か。
(1)α²+β²=0
(2)α²-2αβ+2β²=0
投稿日:2025.05.16

<関連動画>

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。

京都大過去問
この動画を見る 

数学「大学入試良問集」【16−5 複素数平面と軌跡の図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を複素数とし、$i$を虚数単位とする。
(1)$\displaystyle \frac{1}{z+i}+\displaystyle \frac{1}{z-i}$が実数となる点$z$全体の描く図面$P$を複素数平面上にそれぞれ図示せよ。
(2)$z$が上で求められた図形$P$上を動くときに$\omega=\displaystyle \frac{z+i}{z-i}$の描く図形を複素数平面上に図示せよ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(2)

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$\alpha+\beta+\gamma=\alpha^2+\beta^2+\gamma^2=0$
を満たす。$\triangle ABC$はどのような三角形か。
この動画を見る 
PAGE TOP