明治大 3倍角の公式と3次方程式 - 質問解決D.B.(データベース)

明治大 3倍角の公式と3次方程式

問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
投稿日:2021.02.17

<関連動画>

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 

福田の数学〜zを正負で場合分けできないときどうする〜明治大学2023年全学部統一Ⅲ第1問(2)〜複素数に関する2次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)複素数$z$の方程式
$z^2$-3|$z$|+2=0
を考える。この方程式は$\boxed{\ \ イ\ \ }$個の解を持ち、このうち実数でないかの個数は$\boxed{\ \ ウ\ \ }$個である。
この動画を見る 

複素数 基礎から

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを計算せよ.

$\left(\dfrac{\sqrt3-i}{\sqrt2+\sqrt2 i}\right)^{100}$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。

${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る 

分からないので教えてください!ふさわしくない解は?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x-\dfrac{4}{x}=\sqrt x+\dfrac{2}{\sqrt x}$
これを解け.
この動画を見る 
PAGE TOP