福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡

問題文全文(内容文):
$\alphaは0 \lt \alpha \lt \frac{\pi}{2}$を満たす実数とする。
$\angle A=\alpha$および$\angle P=\frac{\pi}{2}$を満たす直角三角形APB
が、次の2つの条件$(\textrm{a}),(\textrm{b})$を満たしながら、時刻t=0から時刻$t=\frac{\pi}{2}$まで
xy平面上を動くとする。
$(\textrm{a})$時刻tでの点A,Bの座標は、それぞれ$A(\sin t,0),B(0, \cos t)$である。
$(\textrm{b})$点Pは第一象限内にある。
このとき、次の問いに答えよ。
(1)点Pはある直線上を動くことを示し、その直線の方程式を$\alpha$を用いて表せ。
(2)時刻$t=0$から時刻$t=\frac{\pi}{2}$までの間に点Pが動く道のりを$\alpha$を用いて表せ。
(3)xy平面内において、連立不等式
$x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0$
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。

2022東京工業大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alphaは0 \lt \alpha \lt \frac{\pi}{2}$を満たす実数とする。
$\angle A=\alpha$および$\angle P=\frac{\pi}{2}$を満たす直角三角形APB
が、次の2つの条件$(\textrm{a}),(\textrm{b})$を満たしながら、時刻t=0から時刻$t=\frac{\pi}{2}$まで
xy平面上を動くとする。
$(\textrm{a})$時刻tでの点A,Bの座標は、それぞれ$A(\sin t,0),B(0, \cos t)$である。
$(\textrm{b})$点Pは第一象限内にある。
このとき、次の問いに答えよ。
(1)点Pはある直線上を動くことを示し、その直線の方程式を$\alpha$を用いて表せ。
(2)時刻$t=0$から時刻$t=\frac{\pi}{2}$までの間に点Pが動く道のりを$\alpha$を用いて表せ。
(3)xy平面内において、連立不等式
$x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0$
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。

2022東京工業大学理系過去問
投稿日:2022.03.31

<関連動画>

福田の数学〜早稲田大学2025教育学部第4問〜共有点の個数と面積計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$は実数とする。

曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との

共有点の偶数を$f(k)$で表す。次の問いに答えよ。

ただし、必要ならば自然数$n$に対し

$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは

説明なしに用いてもよい。

(1)$k$が実数全体を動くとき、

$f(k)$の最大値の最小値を求めよ。

(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。

(3)$\alpha$を正の実数とする。

曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる

部分の面積を$\alpha$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
この動画を見る 

防衛大・三重大 漸化式 三次関数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#漸化式#防衛大学校#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$

三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
この動画を見る 

綺麗な問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の値を求めよ.
$\cos\dfrac{\pi}{33}・\cos\dfrac{2\pi}{33}・\cos\dfrac{4\pi}{33}・\cos\dfrac{8\pi}{33}・\cos\dfrac{16\pi}{33}$
この動画を見る 

【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る 
PAGE TOP