福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}

2021慶應義塾大学整合政策学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}

2021慶應義塾大学整合政策学部過去問
投稿日:2021.07.20

<関連動画>

【数B】確率漸化式:1回の試行で事象Aの起こる確率が1/3であるとする。この試行をn回行うときに奇数回Aが起こる確率をP[n]とする。(1)P[n+1]をP[n]の式で表せ。(2)P[n]を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1回の試行で事象Aの起こる確率が$\dfrac{1}{3}$であるとする。この試行をn回行うときに奇数回Aが起こる確率を$P_n$とする。
(1)$P_{n+1}$を$P_n$の式で表せ。
(2)$P_n$を求めよ。
この動画を見る 

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る 

早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)

(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ

(2)
$a_{n},b_{n}$を求めよ

出典:1997年早稲田大学 理工学術院 過去問
この動画を見る 

【数B】数列:数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。95東工大,07筑波大,青山学院などで出題された問題です!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
この動画を見る 

東北大 分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
この動画を見る 
PAGE TOP