福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
投稿日:2021.07.20

<関連動画>

浜松医大 確率 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
a_{n}=a_{1}+\sum_{k=1}^{n-1}b_{k}
$
この動画を見る 

15和歌山県教員採用試験(数学:4番 帰納法)

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$n \gets IN$
$3^n$と$5n+2$の大小を比較せよ.
この動画を見る 
PAGE TOP