福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題

問題文全文(内容文):
${\Large\boxed{4}}$座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ
の正の整数nについて、4つの格子点$A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)$
が作る正方形をJ_nとする。また、$(n-1,n)$にある格子点を$P_n$とする。
$\left\{a_k\right\}$を初項$a_1$が$-56$で、交差が$\frac{1}{4}$の等差数列とし、数列$\left\{a_k\right\}$の各項を以下の
ようにして格子点上順番に割り当てていく。
1.初項$a_1$は格子点$P_1$に割り当てる。
2.$a_l$が正方形$J_m$の周上にある格子点で$A_m$以外の点に割り当てられているときには、
$J_m$の周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動
した格子点に$a_{l+1}$を割り当てる。
3$.a_l$が格子点$A_m$に割り当てられているときには、$a_{l+1}$を格子点$P_{m+1}$に割り当てる。

全体としては、図に示されているようにして、格子点をたどっていくことになる。
(1)格子点$P_n$に割り当てられる数列$\left\{a_k\right\}$の項を$p_n$とし、格子点$C_n$に割り当て
られる数列$\left\{a_k\right\}$の項を$c_n$とする。
このとき、$p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)上で定めた$p_n$を用いて、$q_n$を数列$\left\{p_n\right\}$の初項$p_1$から第n項$p_n$までの和とする。
$q_n$をnを使って表すと、$q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n$である。
(3)上で定めた$q_n$が最小値を取るのは、$n=\boxed{\ \ ス\ \ }$または$n=\boxed{\ \ セ\ \ }$のときであり、
その値は#$-\boxed{\ \ ソタチ\ \ }$である。

2021慶應義塾大学商学部過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ
の正の整数nについて、4つの格子点$A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)$
が作る正方形をJ_nとする。また、$(n-1,n)$にある格子点を$P_n$とする。
$\left\{a_k\right\}$を初項$a_1$が$-56$で、交差が$\frac{1}{4}$の等差数列とし、数列$\left\{a_k\right\}$の各項を以下の
ようにして格子点上順番に割り当てていく。
1.初項$a_1$は格子点$P_1$に割り当てる。
2.$a_l$が正方形$J_m$の周上にある格子点で$A_m$以外の点に割り当てられているときには、
$J_m$の周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動
した格子点に$a_{l+1}$を割り当てる。
3$.a_l$が格子点$A_m$に割り当てられているときには、$a_{l+1}$を格子点$P_{m+1}$に割り当てる。

全体としては、図に示されているようにして、格子点をたどっていくことになる。
(1)格子点$P_n$に割り当てられる数列$\left\{a_k\right\}$の項を$p_n$とし、格子点$C_n$に割り当て
られる数列$\left\{a_k\right\}$の項を$c_n$とする。
このとき、$p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)上で定めた$p_n$を用いて、$q_n$を数列$\left\{p_n\right\}$の初項$p_1$から第n項$p_n$までの和とする。
$q_n$をnを使って表すと、$q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n$である。
(3)上で定めた$q_n$が最小値を取るのは、$n=\boxed{\ \ ス\ \ }$または$n=\boxed{\ \ セ\ \ }$のときであり、
その値は#$-\boxed{\ \ ソタチ\ \ }$である。

2021慶應義塾大学商学部過去問
投稿日:2021.07.15

<関連動画>

20和歌山県教員採用試験 数列、整数問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{15}{8},\displaystyle \frac{165}{11},\displaystyle \frac{315}{14},\displaystyle \frac{465}{17},・・・$の一般項$a_n$が自然数となるもののうち最大となるときの$n$を求めよ。

出典:2020年教育採用試験和歌山
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 

【数学B/テスト対策】等比数列の一般項と和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等比数列$-2,6,-18,54,…$について、次の問いに答えよ。
(1)
一般項$a_n$を求めよ。

(2)
初項から第$n$項までの和$S_n$を求めよ。

(3)
初項から第$5$項までの和$S_5$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 
PAGE TOP