【高校数学】数Ⅰ-31 命題⑤ - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-31 命題⑤

問題文全文(内容文):
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]

②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]

②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
投稿日:2014.07.16

<関連動画>

「対偶法と背理法の証明②」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。

(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。

(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
この動画を見る 

小数第2022位の数は?!

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
この動画を見る 

【高校数学】  数Ⅰ-94  三角形の面積② ・ ヘロンの公式編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)

◎次のような△ABCの面積を求めよう。

③a=8,b=6,C=4

④a=7,b=5,C=9
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

三角比の拡張 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る 
PAGE TOP