福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
投稿日:2025.07.25

<関連動画>

福田のおもしろ数学011〜あけましておめでとうございます〜2024の階乗は末尾に0が何個並ぶか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2024 !の末尾に並ぶ 0 の個数を求めよ。
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

【数B】数列:京大数学を5分以内に解説! 先頭から順に1~nの番号がついたn両編成の列車がある。 各車両を赤青黄のいずれか1色で塗るとき、隣合った車両の少なくとも一方が赤となる色の塗り方は?

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
この動画を見る 

福田のおもしろ数学415〜1から16の整数を直線または円形に並べ隣り合う2数の和を平方数とできるか

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 福田次郎
問題文全文(内容文):

$1,2,3,\cdots 16$を並びかえて

(1)直線上に配置する。(それぞれの場合に)

(2)円周上に配置する。(それぞれの場合に)

隣り合う$2$つの数の和が

平方数になることは可能か?
   
この動画を見る 

04岡山県教員採用試験(数学:1-(4) 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$a_1=1,S_n=n^2a_n$とする.
一般項$a_n$を求めよ.
この動画を見る 
PAGE TOP