山形大 漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

山形大 漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
投稿日:2018.05.03

<関連動画>

等差数列の一般項 山形大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013年 山形大学 過去問

公差が0でない等差数列{$a_n$}
$a_5^2+a_6^2=a_7^2+a_8^2$
$\displaystyle \sum_{n=1}^{13} a_n=13$
一般項$a_n$を求めよ。
この動画を見る 

【数B】数列:nを自然数とするとき、4^(n+1)+9^nは5の倍数であることを、数学的帰納法を用いて証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを自然数とするとき、4^(n+1)+9^nは5の倍数であることを、数学的帰納法を用いて証明せよ。
この動画を見る 

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【FULL】定期テスト直前対策!数列解説動画フルパック流し【数B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列のまとめ動画です。
問題番号は数研出版4Step(4ステップ)Bに対応しています。
(数値がやや異なる問題もありますが、同じような解法で取り組める問題を参考番号として記載しております。)
この動画を見る 
PAGE TOP