京大の整数問題!京大はこのパターンが大好き - 質問解決D.B.(データベース)

京大の整数問題!京大はこのパターンが大好き

問題文全文(内容文):
pが素数ならばp^4 +14は素数でないことを示せ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pが素数ならばp^4 +14は素数でないことを示せ。
投稿日:2024.12.20

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2+615=2^n$である,自然数$m,n$を求めよ.
この動画を見る 

福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
この動画を見る 

「息抜き」整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a+3^b=n^2$を満たす自然数(a,b,n)は無限にあることを示せ。
$5^a+5^b=n^2$を満たす(a,b,n)はないことを示せ。
a,b,n自然数
この動画を見る 

AkiyaMath様の作成問題① 初コラボ #整数問題 #3次方程式の応用

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k$:整数
3次方程式
$4x^3-(k+3)x+2k+1=0$の解になる2以上の有理数の総和を求めよ。
この動画を見る 

福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1が連続1991個並ぶ数は素数でないことを証明せよ。
この動画を見る 
PAGE TOP