【数Ⅱ】【式と証明】分数式の計算 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】分数式の計算 ※問題文は概要欄

問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
チャプター:

0:00 オープニング
0:05 1問目(1)解説
1:56 1問目(2)解説
4:57 2問目(1)解説
8:35 2問目(2)解説
11:55 3問目解説
14:14 エンディング

単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
投稿日:2025.01.29

<関連動画>

練習問題3(数検準1級,教員採用試験 対数と相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\sqrt x+ \sqrt y = 20$
$log_{10}x+log_{10}y$の最大値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第3問〜不等式の証明と正12角形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!}   (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。

(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。 

2022浜松医科大学医学部過去問
この動画を見る 

またやるの!π>3 05証明 驚愕の解法

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\pi \gt 3.05$を証明せよ.

2003東大過去問
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学

自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る 
PAGE TOP