福田のおもしろ数学387〜連立方程式を解こう - 質問解決D.B.(データベース)

福田のおもしろ数学387〜連立方程式を解こう

問題文全文(内容文):
$x,y,z$は正の実数とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x - y + \dfrac{1}{z}=2025 \\
y - z + \dfrac{1}{x}=2025 \\\
z - x + \dfrac{1}{y}=2025
\end{array}
\right.
\end{eqnarray}$

を解いて下さい。
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 福田次郎
問題文全文(内容文):
$x,y,z$は正の実数とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x - y + \dfrac{1}{z}=2025 \\
y - z + \dfrac{1}{x}=2025 \\\
z - x + \dfrac{1}{y}=2025
\end{array}
\right.
\end{eqnarray}$

を解いて下さい。
投稿日:2025.01.23

<関連動画>

【本番で戸惑わないための3分間、理解を深める5分間!】確率:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#法政大学高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学高等学校

点Aから書き始めて 一筆書きする方法は
全部で何通りあるか求めよ。
※図は動画内参照
この動画を見る 

【裏技】平行線と角度のこれ知ってた?

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図は2本の平行な直線の間にZ型の線が引かれている。
※図は動画内参照
角xを求めよ。
この動画を見る 

【高校受験対策】数学-関数32

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
この動画を見る 

初心に帰って音楽を聴きながら動体視力と頭脳を鍛える動画~全国入試問題解法 #Shorts #数学 #入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
(1)$a$の値を求めよ.
(2)$k=5$のとき,$\triangle OAB$の面積を求めよ.

駿台甲府高校過去問
この動画を見る 

【循環小数(じゅんかんしょうすう)とは…!】確率:京都府公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#数と式#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
さいころを2回投げた.
1回目の出目は$a$であり,2回目の出目は$b$であった.
$\dfrac{a}{b}$の値が循環小数になる確率を求めよ.
※さいころの目の出方は,同様に確からしい.

京都府高校過去問
この動画を見る 
PAGE TOP