一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$


次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$

(2)$|ax+3| \lt 5$


次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$


次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$

(2)$|ax+3| \lt 5$


次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
投稿日:2020.10.25

<関連動画>

2次方程式のこれ解ける?

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
aを定数とする。xの2次方程式
$3(x+a)^2 = (2a^2+1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値を全て求めよ。(灘高校 2024)
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(2)〜角の二等分線の長さを求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(2)AB=4,BC=2\sqrt{6},CA=2\sqrt{3}-2$の$\triangle ABC$がある。$\angle A$の二等分線と辺BCの交点をDとする。このとき、$\triangle ABC$の面積は$\boxed{フ}+\boxed{ヘ}\sqrt{\boxed{ホ}}$であり、$AD=\boxed{マ}+\boxed{ミ}\sqrt{\boxed{ム}}$である。
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。

2022東京大学理系過去問
この動画を見る 

三角比の相互関係 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の相互関係に関して解説していきます.
この動画を見る 

マイナス乗とは?2分の1乗とは?基本から丁寧に解説

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\frac{2}{3})^{-\frac{3}{2}}$
この動画を見る 
PAGE TOP