問題文全文(内容文):
$\boxed{5}$ 5以上の任意の素数$p$に対して,$p^2$を$n$で割ると1余る.
最大の自然数$n$を求めよ.
①$n\leftarrow IN$
$n^2=3k$ or $3k+1 (^3k\Leftarrow IN)$
②$5\leqq p:係数$
$p=6k\pm 1 (^3k\Leftarrow IN)$
$\boxed{5}$ 5以上の任意の素数$p$に対して,$p^2$を$n$で割ると1余る.
最大の自然数$n$を求めよ.
①$n\leftarrow IN$
$n^2=3k$ or $3k+1 (^3k\Leftarrow IN)$
②$5\leqq p:係数$
$p=6k\pm 1 (^3k\Leftarrow IN)$
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$ 5以上の任意の素数$p$に対して,$p^2$を$n$で割ると1余る.
最大の自然数$n$を求めよ.
①$n\leftarrow IN$
$n^2=3k$ or $3k+1 (^3k\Leftarrow IN)$
②$5\leqq p:係数$
$p=6k\pm 1 (^3k\Leftarrow IN)$
$\boxed{5}$ 5以上の任意の素数$p$に対して,$p^2$を$n$で割ると1余る.
最大の自然数$n$を求めよ.
①$n\leftarrow IN$
$n^2=3k$ or $3k+1 (^3k\Leftarrow IN)$
②$5\leqq p:係数$
$p=6k\pm 1 (^3k\Leftarrow IN)$
投稿日:2021.01.01





