気を付けないと間違える計算問題 - 質問解決D.B.(データベース)

気を付けないと間違える計算問題

問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
投稿日:2021.12.18

<関連動画>

弘前大 整式の剰余 微分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+3x^2+2x+7$を割り切り、かつすべての項の係数が正の実数であるような2次式は存在するか

出典:2017年弘前大学 過去問
この動画を見る 

福田の数学〜中央大学2023年理工学部第3問〜関数の変曲点と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)=\displaystyle\frac{1}{1+e^{-x}}$とし、曲線$y$=$f(x)$をCとする。以下の問いに答えよ。
(1)曲線Cの変曲点Pの座標を求めよ。
(2)曲線Cの点Pにおける接線$l$の方程式を求めよ。また、直線$l$と直線$y$=1の交点の$x$座標$a$を求めよ。
(3)$b$を(2)で求めた$a$より大きい実数とする。曲線Cと直線$y$=1, $x$=$a$, $x$=$b$で囲まれた部分の面積$S(b)$を求めよ。
(4)$\displaystyle\lim_{b \to \infty}S(b)$を求めよ。
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にせよ。
(1) $(\log_{2} 9+\log_{8} 3)(\log_{3} 2+\log_{9} 4)$
(2) $\log_{4} 3・\log_{9} 25・\log_{5} 8)$
(3) $\log_{2} 10・\log_{5} 10-(\log_{2} 5+\log_{5} 2)$

$a=\log_{2} 3$,$b=\log_{2} 5$とするとき、次の式をa,bで表せ。
(1) $\log_{2} 15$
(2) $\log_{2} 75$
(3) $\log_{4} 45$

$p=\log_{a} x$,$q=\log_{a} y$,$r=\log_{a} z$であるとき、次の各式をp,q,rで表せ。
ただし、a,x,y,zは正の数とし、a≠1とする。
(1) $\log_{a} x²y³z⁴$
(2) $\log_{a} \frac{x}{(yz)^2}$
(3) $\log_{a} \frac{x\sqrt{y}}{\sqrt[3]{z}}$

$a=\log_{15} 3$, $b=\log_{3} 2$とするとき、次の式をa,bで表せ。
(1) $\log_{15} 2$
(2) $\log_{15} 5$
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 
PAGE TOP