気を付けないと間違える計算問題 - 質問解決D.B.(データベース)

気を付けないと間違える計算問題

問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
投稿日:2021.12.18

<関連動画>

これ読み解ける??

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$y=\displaystyle \frac{1n(\displaystyle \frac{x}{m}-sa)}{r^2}$
この動画を見る 

【数Ⅱ】三角関数と方程式 5 三角関数と対称式【t=sinx+cosxで置換しよう】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
この動画を見る 

【高校数学】 数Ⅱ-91 三角関数の性質②

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta \cos \theta=\displaystyle \frac{1}{2}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$のとき、次の式の値を求めよう。

①$\sin \theta +\cos \theta$

②$sin^3 \theta+\cos^3 \theta$
この動画を見る 
PAGE TOP