気を付けないと間違える計算問題 - 質問解決D.B.(データベース)

気を付けないと間違える計算問題

問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
投稿日:2021.12.18

<関連動画>

福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。

2016東京大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} xyz空間において、直方体ABCD-EFGHがz \geqq x^2+y^2\\
(0 \leqq z \leqq 1)を満たす立体の周辺および内部に存在する。この\\
直方体の面ABCD,EFGHはxy平面に平行であり、頂点A,B,C,D\\
は平面z=1上に、頂点E,F,G,Hは曲面z=x^2+y^2上に存在する。\\
\\
(1)直方体ABCD-EFGHの面ABCDおよびEFGHが1辺の長さa\\
の正方形のとき、正の実数であるaの取り得る値の範囲は\\
0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}であり、この直方体の体積は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2\\
である。\\
\\
(2)直方体ABCD-EFGHの面ABFEおよびDCGHが1辺の長さb\\
の正方形のとき、正の実数であるbの取り得る値の範囲は\\
0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}であり、この直方体の体積は\\
b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}である。\\
\\
(3)直方体ABCD-EFGHの全ての面が1辺の長さcの正方形のとき、すなわち\\
直方体ABCD-EFGHが立方体のとき、正の実数であるcの値は\\
\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}であり、立方体ABCD-EFGHの体積は\\
\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}である。
\end{eqnarray}
この動画を見る 

#富山大学推薦2019#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{x}{x^2+1} dx$

出典:2019年富山大学推薦
この動画を見る 

東京水産大 三次関数の共通接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ

出典:1994年東京海洋大学 過去問
この動画を見る 

大学入試じゃないよ 高校入試だよ  3通りで解説 成城学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
この動画を見る 
PAGE TOP