問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。
2023杏林大学過去問
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。
2023杏林大学過去問
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。
2023杏林大学過去問
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。
2023杏林大学過去問
投稿日:2023.12.28