福田の数学〜神戸大学2025文系第2問〜小数部分と命題の証明 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2025文系第2問〜小数部分と命題の証明

問題文全文(内容文):

$\boxed{2}$

実数$a$に対して、

$a$を超えない最大の整数を$k$とするとき、

$a-k$を$a$の小数部分という。

$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。

以下の問いに答えよ。

(1)$a_n \lt n+1$が成り立つことを示せ。

(2)$b_n$を$a_n$の小数部分とする。

$b_n$を$n$を用いて表せ。

(3)$b_n$を(2)で定めたものとする。

$m,n$を異なる$2$つの自然数とするとき、

$b_m \neq b_n$であることを示せ。

$2025$年神戸大学文系過去問題
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a$に対して、

$a$を超えない最大の整数を$k$とするとき、

$a-k$を$a$の小数部分という。

$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。

以下の問いに答えよ。

(1)$a_n \lt n+1$が成り立つことを示せ。

(2)$b_n$を$a_n$の小数部分とする。

$b_n$を$n$を用いて表せ。

(3)$b_n$を(2)で定めたものとする。

$m,n$を異なる$2$つの自然数とするとき、

$b_m \neq b_n$であることを示せ。

$2025$年神戸大学文系過去問題
投稿日:2025.06.24

<関連動画>

ルートを外せ15

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{n^2+297}{n^2+1}}$が整数となる整数nをすべて求めよ

2022中央大学附属高等学校
この動画を見る 

中国Jr 数学Olympicその2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left[\dfrac{10^{93}}{10^{31}+3}\right]$の下2桁の数を求めよ.

中国jr数学オリンピック過去問
この動画を見る 

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5x+3=0$の2解を$\alpha, \beta$
(1)$\alpha^3,\beta^3$を解にもつ2次方程式
  $x^2+px+q=0$ $p,q$の値



(2)$|\alpha-\beta|=m+d$
$(m$整数,$0 \leqq d \lt 1)$
$n \leqq 10d \lt n+1$ 整数$n$


過去問:センター試験
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt2 $ vs $\sqrt[3]{3}$
どちらが大きいか?
この動画を見る 

【中学数学】因数分解のテクニック~マル秘必殺技~ 3-3【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の式を因数分解せよ
$x^2-24x+60$
この動画を見る 
PAGE TOP