問題文全文(内容文):
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
投稿日:2025.06.24





