整数問題 合同式 - 質問解決D.B.(データベース)

整数問題 合同式

問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
投稿日:2019.08.03

<関連動画>

福田のおもしろ数学418〜条件を満たす3つの数を割りきれるようにすることが可能か不可能かの考察

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。

$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して

$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ

$\overline{ca}$が$b$で割り切れることは可能か?
   
この動画を見る 

【高校数学】最大公約数と最小公倍数の例題演習 5-4.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 和が648で最大公約数が72であるような、ともに3桁の2つの自然数を求めよ。

(2) 最大公約数が28で最小公倍数1260であるような自然数a,bの組をすべて求めよ。
  ただし、a$\lt$bとする。
この動画を見る 

Entrance exam for Kyoto University.find all $(p,q)$ that meets $p^q+q^p=$prime number.p,q are prime .

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^q+q^p=$素数を満たすすべての$(p,q)$を見つけてください。($p,q$は素数)

出典:京都大学 入試問題
この動画を見る 

共通テストの誘導はこういうことだったのね

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割って3余り

9で割って2余り

11で割って1余る

最小の自然数を求めよ。
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
この動画を見る 
PAGE TOP