【数Ⅱ】三角形の重心の軌跡【除外点に注意しよう】 - 質問解決D.B.(データベース)

【数Ⅱ】三角形の重心の軌跡【除外点に注意しよう】

問題文全文(内容文):
点Qが円$x^2+y^2=9$上を動くとき,
点$A(4,0)$と点Qを結ぶ線分AQの中点Pの軌跡を求めよ.
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
点Qが円$x^2+y^2=9$上を動くとき,
点$A(4,0)$と点Qを結ぶ線分AQの中点Pの軌跡を求めよ.
投稿日:2022.04.04

<関連動画>

式変形だけで解くことができますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$\alpha>0°,\beta>0°,\alpha+\beta<180°$かつ$ sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$ sin\alpha+sin\beta$の取りうる範囲を求めよ。
この動画を見る 

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(3)\\
\left\{\begin{array}{1}
円\ x^2+(y-a)^2=r^2 (a \gt 0,r \gt 0) \ldots①\\
放物線\ y=\displaystyle\frac{1}{2}x^2 \ldots②\\
\end{array}\right.\\
が次の条件を満たすときaの範囲、rをaで表せ。\\
\\
(1)原点Oで接し、かつ他に共有点を持たない。\\
(2)異なる2点で接する。
\end{eqnarray}
この動画を見る 

【数IIB】7分で「6分の1公式」をマスターしよう【一夜漬け】【直前に5点UP】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
積分の1/6公式の具体的な使い方がこの動画を見れば7分でマスターできます!
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]aを実数とし、f(x)=x^3-6ax+16\\
(1)y=f(x)のグラフの概形は\\
a=0のとき、\boxed{\ \ ア\ \ }\\
a \gt 0のとき、\boxed{\ \ イ\ \ }\\
である。\\
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }については、最も適当なものを、次の⓪~⑤のうちから\\
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
(※選択肢は動画参照)\\
\\
\\
(2)a \gt 0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=p\\
が3個の共有点をもつようなpの値の範囲は\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }\\
である。\\
p=\boxed{\ \ ウ\ \ }のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。\\
それらのx座標をq,r(q \lt r)とする。曲線y=f(x)と直線y=p\\
が点(r,p)で接することに注意すると\\
q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}\\
と表せる。\\
\\
\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪2\sqrt2a^{\frac{3}{2}}+16 ①-2\sqrt2a^{\frac{3}{2}}+16\\
②4\sqrt2a^{\frac{3}{2}}+16 ③-4\sqrt2a^{\frac{3}{2}}+16\\
④8\sqrt2a^{\frac{3}{2}}+16 ⑤-8\sqrt2a^{\frac{3}{2}}+16\\
\\
(3)方程式f(x)=0の異なる実数解の個数をnとする。次の⓪~⑤のうち、\\
正しいものは\boxed{\ \ ケ\ \ }と\boxed{\ \ コ\ \ }である。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(解答の順序は問わない。)\\
\\
⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1\\
②n=2ならばa \lt 0 ③a \lt 0ならばn=2\\
④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3\\
\\
\\
[2]b \gt 0とし、g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2とおく。\\
座標平面上の曲線y=g(x)をC_1, 曲線y=h(x)をC_2とする。\\
\\
\\
C_1とC_2は2点で交わる。これらの交点のx座標をそれぞれ\alpha,\beta\\
(\alpha \lt \beta)とすると、\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }である。\\
\alpha \leqq x \leqq \betaの範囲でC_1とC_2で囲まれた図形の面積をSとする。また、\\
t \gt \betaとし、\beta \leqq x \leqq tの範囲でC_1とC_2および直線x=tで囲まれた図形の\\
面積をTとする。\\
このとき\\
S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx\\
T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx\\
S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx\\
であるので\\
S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)\\
が得られる。\\
したがって、S=Tとなるのはt=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ bのときである。\\
\\
\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}\\
②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}\\
④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}\\
⑥2g(x) ⑦2h(x)
\end{eqnarray}
この動画を見る 
PAGE TOP