【数Ⅱ】三角関数:解が三角関数で表される2次方程式:p>0とする。xの方程式4x²+2(1-p)x-p=0の解が、sinθとcosθ(0≦θ<2π)であるとき、pとθの値を求めよう。 - 質問解決D.B.(データベース)

【数Ⅱ】三角関数:解が三角関数で表される2次方程式:p>0とする。xの方程式4x²+2(1-p)x-p=0の解が、sinθとcosθ(0≦θ<2π)であるとき、pとθの値を求めよう。

問題文全文(内容文):
解が三角関数で表される2次方程式:p>0とする。xの方程式$4x^2+2(1-p)x-p=0$の解が、$sinθ$と$cosθ(0≦θ<2\pi)$であるとき、$p$と$\theta$の値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:13 pを求める:解と係数の関係の利用
1:12 pを求める:sin²θ+cos²θ=1の利用
2:22 θを求める
3:34 名言

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
解が三角関数で表される2次方程式:p>0とする。xの方程式$4x^2+2(1-p)x-p=0$の解が、$sinθ$と$cosθ(0≦θ<2\pi)$であるとき、$p$と$\theta$の値を求めよう。
投稿日:2021.04.08

<関連動画>

東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1](1)次の問題Aについて考えよう。\\
問題A 関数y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
\\
\sin\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{1}{2} であるから、三角関数の合成により\\
y=\boxed{\ \ イ\ \ }\sin(\theta+\frac{\pi}{\boxed{\ \ ア\ \ }})\\
\\
と変形できる。よって、yは\theta=\frac{\pi}{\boxed{\ \ ウ\ \ }}で最大値\boxed{\ \ エ\ \ }をとる。\\
\\
(2)pを定数とし、次の問題Bについて考えよう。\\
問題B 関数y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
(\textrm{i})p=0のとき、yは\theta=\frac{\pi}{\boxed{\ \ オ\ \ }}で最大値\boxed{\ \ カ\ \ }をとる。\\
\\
(\textrm{ii})p \gt 0のときは、加法定理\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alphaを用いると\\
y=\sin\theta+p\cos\theta=\sqrt{\boxed{\ \ キ\ \ }}\cos(\theta-\alpha)\\
\\
と表すことができる。ただし\alphaは\sin\alpha=\frac{\boxed{\ \ ク\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, \cos\alpha=\frac{\boxed{\ \ ケ\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, 0 \lt \alpha \lt \frac{\pi}{2}\\
\\
を満たすものとする。このとき、yは\theta=\boxed{\ \ コ\ \ }で最大値\sqrt{\boxed{\ \ サ\ \ }}をとる。\\
\\
(\textrm{iii})p \lt 0のとき、yは\theta=\boxed{\ \ シ\ \ }で最大値\sqrt{\boxed{\ \ ス\ \ }}をとる。\\
\\
\\
\boxed{\ \ キ\ \ }~\boxed{\ \ ケ\ \ }、\boxed{\ \ サ\ \ }、\boxed{\ \ ス\ \ }の解答群\\
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\
\\
\\
\boxed{\ \ コ\ \ }、\boxed{\ \ シ\ \ }の解答群\\
⓪0    ①\alpha    ②\frac{\pi}{2}\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【数Ⅱ】三角関数のグラフ①(y=sinθ、y=cosθ、y=tanθのグラフ)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=sinθ、y=cosθ、y=tanθ$のグラフを解説しました。
この動画を見る 

大阪大2022

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.

2022阪大過去問
この動画を見る 

【高校数学】三角関数の性質の裏技~先生には怒られるかもしれません~ 4-3.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数の性質の裏技紹介動画です
この動画を見る 
PAGE TOP