満点は激ムズ!?常用対数の難問です【お茶の水女子大学】【数学 入試問題】 - 質問解決D.B.(データベース)

満点は激ムズ!?常用対数の難問です【お茶の水女子大学】【数学 入試問題】

問題文全文(内容文):
以下の問いに答えよ。ただし、必要があれば、
$0.3010<\log_{10} 2<0.3011$
$0.4771<\log_{10} 3<0.4772$であることを用いてもよい。

(1)$3^{53}$の桁数を求めよ。

(2)$3^{53}$の最高位の数と1の位の数をそれぞれ求めよ。

(3)$|3^{53}-2^m|$が最小となる整数$m$を求めよ。

お茶の水女子大過去問
単元: #数Ⅱ#指数関数と対数関数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
以下の問いに答えよ。ただし、必要があれば、
$0.3010<\log_{10} 2<0.3011$
$0.4771<\log_{10} 3<0.4772$であることを用いてもよい。

(1)$3^{53}$の桁数を求めよ。

(2)$3^{53}$の最高位の数と1の位の数をそれぞれ求めよ。

(3)$|3^{53}-2^m|$が最小となる整数$m$を求めよ。

お茶の水女子大過去問
投稿日:2023.02.05

<関連動画>

慶應義塾大 3次方程式が有理数解をもつ条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.

慶應義塾大過去問
この動画を見る 

福田のわかった数学〜高校2年生029〜円と放物線の位置関係(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(1)\\
\left\{\begin{array}{1}
円\ x^2+y^2=r^2 (r \gt 0)\\
放物線\ y=x^2-1
\end{array}\right.\\
\\
の共有点の個数を調べよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】三角関数のグラフ② 縦の変化(y=2sinθ、y=sinθ+1のグラフ)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数のグラフ①の続きです。この動画では縦の変化($y=2sinθ、y=sinθ+1$のグラフ)を扱います。
この動画を見る 

福田のわかった数学〜高校2年生076〜三角関数(15)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
この動画を見る 

【数Ⅱ】図形と方程式:点と直線の距離(最小値):平面上の2点をA(1,1),B(2,3)とする。点Pが放物線y=x²+4x+10上を動くとき△PABの面積の最小値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の2点をA(1,1),B(2,3)とする。点Pが放物線$y=x^2+4x+10$上を動くとき△PABの面積の最小値を求めよ。
この動画を見る 
PAGE TOP