問題文全文(内容文):
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
投稿日:2021.11.12