【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】 - 質問解決D.B.(データベース)

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

問題文全文(内容文):
$\displaystyle
a_{n}=a_{1}+\sum_{k=1}^{n-1}b_{k}
$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
a_{n}=a_{1}+\sum_{k=1}^{n-1}b_{k}
$
投稿日:2022.06.18

<関連動画>

【数学B/テスト対策】等比数列の一般項と和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等比数列$-2,6,-18,54,…$について、次の問いに答えよ。
(1)
一般項$a_n$を求めよ。

(2)
初項から第$n$項までの和$S_n$を求めよ。

(3)
初項から第$5$項までの和$S_5$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系010〜極限(10)解けない漸化式の極限

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
この動画を見る 

整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とするとき、
$2^{3n-2}+3^n$は5の倍数であることを
数学的帰納法によって証明せよ。

会津大過去問
この動画を見る 

漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$
$a_{n+1}=3a_{n}+6n^2-12n+2$
一般項を求めよ

出典:大阪工業大学 過去問
この動画を見る 

これ解けますか?

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
成立させよ
0+0+0+0=24
この動画を見る 
PAGE TOP