【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】 - 質問解決D.B.(データベース)

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

問題文全文(内容文):
$\displaystyle
a_{n}=a_{1}+\sum_{k=1}^{n-1}b_{k}
$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
a_{n}=a_{1}+\sum_{k=1}^{n-1}b_{k}
$
投稿日:2022.06.18

<関連動画>

福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5$$+3・4・7+$$4・5・9+$$\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6,$$ 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2,$$ 2^2+2・3+3^2,$$ 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2),$$\cdots$$, (2n-3)・2$$, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),$$\cdots$$, (n-1)^2・2$$, n^2・1$
この動画を見る 

大学入試問題#463「ええ問題や~~」 信州大学 理・医 (2016) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^n dx$
$=\displaystyle \frac{4^n(n!)^2}{(2n+1)!}$を示せ

出典:2016年信州大学医学部 入試問題
この動画を見る 

【高校数学】階差数列の問題演習~基礎的な問題~ 3-9.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{eqnarray}
一般項a_nを求めよ
\end{eqnarray}

\begin{eqnarray}
(1)\,\,1,\,7,\,17,\,31,\,71,\,…
\end{eqnarray}
\begin{eqnarray}
(2)\,\,2,\,3,\,5,\,9,\,17,\,…
\end{eqnarray}
この動画を見る 

熊本大(文)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ

$a_1=\displaystyle \frac{2}{3}$

$2(a_n-a_{n+1})=(n+2)a_na_{n+1}$

熊本大学文学部
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 
PAGE TOP