福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (1)f(x)=(x+2)(x-1)^{10}とし、この式を展開して\hspace{100pt}\\
f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}\hspace{80pt}\\
と表す。ただし、a_0,a_1,...,a_{11}は定数である。\hspace{110pt}\\
(\textrm{a})多項式f(x)をx-2で割った時の余りは\boxed{\ \ ア\ \ }\ である。\hspace{70pt}\\
(\textrm{b})a_{10}=-\ \boxed{\ \ イ\ \ }\ である。\hspace{190pt}\\
(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{\ \ ウエオ\ \ }\ である。\hspace{74pt}\\
(\textrm{d})\ \ \ \ f(i)=\boxed{\ \ カキ\ \ }-\boxed{\ \ クケ\ \ }\ i \ である。ただし、iは虚数単位である。\hspace{9pt}
\end{eqnarray}

2022明治大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (1)f(x)=(x+2)(x-1)^{10}とし、この式を展開して\hspace{100pt}\\
f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}\hspace{80pt}\\
と表す。ただし、a_0,a_1,...,a_{11}は定数である。\hspace{110pt}\\
(\textrm{a})多項式f(x)をx-2で割った時の余りは\boxed{\ \ ア\ \ }\ である。\hspace{70pt}\\
(\textrm{b})a_{10}=-\ \boxed{\ \ イ\ \ }\ である。\hspace{190pt}\\
(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{\ \ ウエオ\ \ }\ である。\hspace{74pt}\\
(\textrm{d})\ \ \ \ f(i)=\boxed{\ \ カキ\ \ }-\boxed{\ \ クケ\ \ }\ i \ である。ただし、iは虚数単位である。\hspace{9pt}
\end{eqnarray}

2022明治大学理工学部過去問
投稿日:2022.09.05

<関連動画>

二項展開

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-2)^{50}$の$x^k$の係数を$a_k$
$a_k$が最大・最小になる$k$の値を求めよ
この動画を見る 

式の証明 山梨大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

$\frac{a^3+a}{a+1}=\frac{b^3+b}{b+1}=\frac{c^3+c}{c+1}$
$a \neq b$、$b \neq c、c \neq a$のとき
a+b+c=0であることを証明せよ。
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
この動画を見る 

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(4) 三角不等式の基礎\\
(1)\sin\theta \gt -\frac{1}{2} (2)\cos\theta \leqq \frac{\sqrt3}{2} (3)\tan\theta \gt -1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP