#前橋工科大学2021#定積分_14#元高校教員 - 質問解決D.B.(データベース)

#前橋工科大学2021#定積分_14#元高校教員

問題文全文(内容文):
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$

出典:2021年前橋工科大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$

出典:2021年前橋工科大学
投稿日:2024.08.21

<関連動画>

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 

#宮崎大学2024#不定積分_20#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$

出典:2024年 宮崎大学
この動画を見る 

秋田大(医) 因数分解 整式の剰余 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007秋田大学過去問題
因数分解せよ
(1) $x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
(2) $f(x)$を$x^2-4x+3$で割ったときの余りは$x+1$,$x^2-3x+2$で割ったときの余りは$3x-1$である。
$f(x)$を$x^3-6x^2+11x-6$で割ったときの余り。
この動画を見る 

大学入試問題#42 慶應義塾大学(2021) 絶対値の定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a:$実数
$f(x)=|x|+a$に対して$\displaystyle \int_{-5}^{5}|f(x)|dx$が最小となる$a$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

大阪府立大 積分 面積公式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪府立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+x^2-4kx+6k^2$
$g(x)=x^3+2x-3k$

$f(x)$と$g(x)$とで囲まれた部分の面積が最大となる$k$の値は?

出典:2012年大阪府立大学 過去問
この動画を見る 
PAGE TOP