割り算の復習をしよう - 質問解決D.B.(データベース)

割り算の復習をしよう

問題文全文(内容文):
$5^{2024}$÷1000
あまりを求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2024}$÷1000
あまりを求めよ
投稿日:2023.11.27

<関連動画>

福井大(医)整式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
この動画を見る 

福田のおもしろ数学330〜三角形の成立条件と条件を満たす三角形の個数

アイキャッチ画像
単元: #数A#図形の性質#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
この動画を見る 

千葉大 漸化式 証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数

(1)
$a_{n}$は整数

(2)
$a_{n}$を3で割ると余りは2である

出典:2013年千葉大学 過去問
この動画を見る 

【合同式】整数問題がみるみる解けるようになる最強の武器を授けましょう。【数学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$17^{100}$を$6$で割ったあまりを求めよ
この動画を見る 

徳島大(医)整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$n^2(n^2+8)$の正の約数が$10$個である$n$をすべて求めよ.

2019徳島大(医)
この動画を見る 
PAGE TOP