複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。

京都大過去問
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。

京都大過去問
投稿日:2022.12.09

<関連動画>

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
$Z+w=Zw$
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

数学「大学入試良問集」【16−6 複素数平面と軌跡・回転移動】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。

(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 

東邦(医)正五角形の外接円と内接円の半径の比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
正五角形の外接円、内接円の半径をそれぞれR,rとする。
$\frac{r}{R}$の値を求めよ。
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。

(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。

$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}$

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP