問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#福井大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
投稿日:2018.07.08