群馬大 複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

群馬大 複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
群馬大学過去問題
$Z=\frac{\sqrt3-1}{2}+\frac{\sqrt3+1}{2}i$
(1)$\frac{Z}{1+i}$をa+biの形で(a,b実数)
(2)Zを極形式で表せ
(3)$Z^{12}$を計算せよ
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$Z=\frac{\sqrt3-1}{2}+\frac{\sqrt3+1}{2}i$
(1)$\frac{Z}{1+i}$をa+biの形で(a,b実数)
(2)Zを極形式で表せ
(3)$Z^{12}$を計算せよ
投稿日:2018.08.24

<関連動画>

福田の数学〜東京理科大学2024創域理工学部第1問(1)〜複素数と三角形の外接円

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)a$を正の実数とする。$x$についての方程式
$(x^2+ax+2)(x^2-ax-1)=0・・・①$
が異なる2つの実数解と異なる2つの虚数解をもつのは
$\boxed{ア} \lt a \lt \boxed{イ}\sqrt{\boxed{ウ}}・・・②$
のときである。
以下では、$a$は不等式$②$を満たす最大の整数とし、$i$は虚数単位とする。このとき、複素数平面上において、方程式$①$の異なる2つの虚数解と$3+i$を頂点とする三角形の面積は$\boxed{エ}$であり、この三角形の外接円を複素数zの方程式で表すと
$|x-\boxed{オ}|=\sqrt{\boxed{カ}}$
である。
この動画を見る 

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
この動画を見る 

福田の数学〜名古屋大学2024年理系第2問〜3次方程式の共通解と複素数平面

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
この動画を見る 

大学入試問題#594「やばいのは見た目だけ」 東京帝国大学(1926) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ i }$を求めよ。
$(i^2=-1)$

出典:1926年東京帝国大学医学部 入試問題
この動画を見る 

福田の数学〜東京大学2025理系第6問〜複素数平面上の点の軌跡と実部の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{6}$

複素数平面上の点$\dfrac{1}{2}$を中心とする

半径$\dfrac{1}{2}$の円の周から原点を除いた曲線を

$C$とする。

(1)曲線$C$上の複素数$z$に対し、$\dfrac{1}{z}$の実部は

$1$であることを示せ。

(2)$\alpha,\beta$を曲線$C$上の相異なる複素数とするとき、

$\dfrac{1}{alpha^2}+\dfrac{1}{\beta^2}$がとりうる範囲を

複素数平面上に図示せよ。

(3)$\nu $を(2)で求めた範囲に属さない複素数とするとき、

$\dfrac{1}{\gamma}$の実部がとりうる値の

最大値と最小値を求めよ。

$2025$年東京大学理系過去問題
この動画を見る 
PAGE TOP