【意外と解けない?!?!】$y=3^{2x}$を微分せよ。 - 質問解決D.B.(データベース)

【意外と解けない?!?!】$y=3^{2x}$を微分せよ。

問題文全文(内容文):
$y=3^{2x}$を微分せよ。
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$y=3^{2x}$を微分せよ。
投稿日:2020.11.15

<関連動画>

【高校数学】数Ⅲ-109 接線と法線②

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=tan x \left(0 \lt x \lt \dfrac{\pi}{2}\right)$について、
傾きが2である接線の方程式を求めよ。

②曲線$y=\log x$について、原点から引いた接線の方程式を求めよ。

③曲線$y=\sqrt x$について、点$(-2,0)$から引いた接線の方程式と接点の座標を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。

(2)$\tan\angle APB$を$t$を用いて表せ。

(3)$\angle APB$を最小にする$t$の値を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

【高校数学】数Ⅲ-92 積の微分法

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=(x^2+2x)(x+3)$

②$y=(5x^2-3x-4)(2x+1)$

③$y=(x^2-3x+2)(x^2+1)$

④$y=(x+1)(x+2)(x+3)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 
PAGE TOP