横浜市立(医)整数の基本問題 - 質問解決D.B.(データベース)

横浜市立(医)整数の基本問題

問題文全文(内容文):
$n$を自然数とし,$1\leqq n \leqq 1000$である.
$n^5+1$が3の倍数となるnは何個か?

横浜市立(医)過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,$1\leqq n \leqq 1000$である.
$n^5+1$が3の倍数となるnは何個か?

横浜市立(医)過去問
投稿日:2023.04.21

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)=n^3+2n^2+2n$
$g(n)=3n+2$
整数$f(n)$は整数$g(n)$の倍数である.
nをすべて求めよ.

この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
この動画を見る 

早稲田 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
この動画を見る 

福田のおもしろ数学155〜6の倍数である証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
この動画を見る 

素数を求めよ お茶の水女子大付属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
123123のように3ケタの同じ整数を2つ並べて6ケタの整数を作るとある素数で必ず割り切れる。
この素数をすべて求めよ。

お茶の水女子大学附属高等学校
この動画を見る 
PAGE TOP