大学入試問題#86 防衛医科大学(1988) 極限 - 質問解決D.B.(データベース)

大学入試問題#86 防衛医科大学(1988) 極限

問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。

出典:1988年防衛医科大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。

出典:1988年防衛医科大学 入試問題
投稿日:2022.01.11

<関連動画>

関西医科大 分数不等式 整数問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西医科大学過去問題
$f(x)=\frac{6x^2+17x+10}{3x-2}$
①$f(x)>0$をみたすxの範囲
②f(n)が正の整数となる整数n
この動画を見る 

【高校数学】数Ⅲ-87 関数の連続性②

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数$f(x)$が、$x=0$で連続であるか不連続であるかを調べよ。
ただし、$[x]$は実数$x$を超えない最大の整数とする。

①$f(x)=3x^2$

②$f(x)=[\cos x]$

③$f(x)=x^2+\dfrac{x^2}{1+x^2}+\dfrac{x^2}{(1+x^2)^2}+・・・$
この動画を見る 

極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \lim_{ x \to 1 } \dfrac{\sqrt x -1}{\sqrt[3]{x}-1}$,これを解け.
この動画を見る 

m,n自然数 m^n=n^m すべて求めよ

アイキャッチ画像
単元: #数A#整数の性質#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,n自然数(m>n)
$m^n=n^m$を満たすm,nをすべて求めよ。
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る 
PAGE TOP