高専数学 微積II #32(1) 級数の和 - 質問解決D.B.(データベース)

高専数学 微積II #32(1) 級数の和

問題文全文(内容文):
等比級数
$\displaystyle \sum_{n=1}^{\infty} x^{n-1} (3-4x)^{n-1}$
が収束するように
$x$の範囲を定め和を求めよ.
単元: #数Ⅱ#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
等比級数
$\displaystyle \sum_{n=1}^{\infty} x^{n-1} (3-4x)^{n-1}$
が収束するように
$x$の範囲を定め和を求めよ.
投稿日:2021.07.26

<関連動画>

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 

慶應義塾大(経済)漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}=2a_n^2$

(1)
一般項$a_n$1を求めよ

(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$

出典:2005年慶應義塾大学経済学部 過去問
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
この動画を見る 

福田のおもしろ数学545〜最大公約数と最小公倍数の商で定まる数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

自然数の列$\{a_n\}$が次の性質を満たしている。

$a_n=\dfrac{Icm(a_{n-1},a_{n-2})}{gcd(a_{n-1},a_{n-2})} \quad (n\geqq 2)$

$a_{560}=560,a_{1600}=1600$のとき

$a_{2025}$を求めて下さい。
    
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 
PAGE TOP