立教大 整式の剰余 - 質問解決D.B.(データベース)

立教大 整式の剰余

問題文全文(内容文):
$x^{2002}$を$x^4-1$で割った余りを求めよ.

立教大過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2002}$を$x^4-1$で割った余りを求めよ.

立教大過去問
投稿日:2021.09.27

<関連動画>

2023京都大学 3乗根の分母の有理化

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
分母を有利化せよ.
$\dfrac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [3] 外接円の半径が3である\triangle ABCを考える。点Aから直線BCへ引いた垂線と直線BC\\
との交点をDとする。\\
\\
(1)AB=5, AC=4とする。このとき\sin\angle ABC=\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}, AD=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }} である。\\
\\
(2) 2辺AB,ACの長さの間に2AB+AC=14 の関係があるとする。\\
このとき、ABの長さの取り得る値の範囲は\boxed{\ \ ト\ \ } \leqq AB \leqq \boxed{\ \ ナ\ \ } であり、\\
AD=\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}AB^2+\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}AB と表せるので、ADの長さの最大値は\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

数1基本問題2023

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(x,y)$の組をすべて求めよ.
$12x^2-xy-5x-y^2-10y+2023=0$

この動画を見る 

一発でできる!二重根号のはずし方

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二重根号のはずし方に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(3)〜3次関数と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)a,bを実数とし、実数xの関数f(x)をf(x)=$x^3$+$ax^2$+$bx$-6とおく。
方程式f(x)=0はx=-1を解に持ち、f'(-1)=-7である。
(i)a=$\boxed{\ \ オ\ \ }$, b=$\boxed{\ \ カ\ \ }$である。
(ii)cは正の実数とする。f(x)≧3$x^2$+4(3c-1)$x$-16がx≧0において常に成立するとき、cの値の範囲は$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP