【数C】【複素数平面】複素数平面の対称移動 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数平面の対称移動 ※問題文は概要欄

問題文全文(内容文):
複素数平面上で$\mathrm{O}(0)、\mathrm{A}(-1+\sqrt{3}i)$とする。点$z$を直線$\mathrm{OA}$に関して対称移動した点を$w$とするとき、$w$を$z$を用いて表せ。
チャプター:

0:00 オープニング
0:04 問題文紹介
0:40 図形だけに注目
3:47 問題の解説
7:35 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上で$\mathrm{O}(0)、\mathrm{A}(-1+\sqrt{3}i)$とする。点$z$を直線$\mathrm{OA}$に関して対称移動した点を$w$とするとき、$w$を$z$を用いて表せ。
投稿日:2025.03.08

<関連動画>

福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。

2023九州大学理系過去問
この動画を見る 

福田の数学〜明治大学2024全学部統一III第2問〜複素数平面上の点の移動と確率

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とし、$\omega =\frac{-1+\sqrt{3}i}{2}$とする。
投げたときに表と裏の出る確率がそれぞれ$\frac{1}{2}$の硬貨を用意する$ z_{0} = 0$ とおき、この硬貨を4回投げて、複素数$z_1, z_2, z_3, z_4$を次の規則により定める。
$n = 1, 2, 3, 4$ に対して、$n$回目に投げたとき、表が出たならば$z_n = \omega z_{n-1}$とし、 裏が出れば$ z_n = z_{n−1}+1$とする。例えば、4回投げた結果、順に「裏、表、裏、 表」と出た場合、$z_{1} = z_{0} + 1 = 1, z_2 = \omega z_1 = \omega, z_{3} = z_{2} + 1 = \omega + 1, z_{4} = \omega z_{3} = \omega ^ 2 + \omega$ となる。
上の規則により$z_1, z_2, z_3, z_4$を定めたとき、$P$を$ z_{4} = 0 $となる確率、$Q$を$ z_{4} = 1$ となる確率、$R$を $z_{4} = \omega + 1$ となる確率とすると$2^4P=\fbox{ア}、2Q=\fbox{イ}, 2R=\fbox{ウ}$である。また、$S$を$|z_4|=1$となる確率、$T$を$|z_4|=2$となる確率とすると$2^4S=\fbox{エ}, 2^4T=\fbox{オ}$である。
この動画を見る 

01愛知県教員採用試験(数学:14番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
この動画を見る 

ド・モアブルの定理を用いてオイラーの公式を導く

アイキャッチ画像
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 
PAGE TOP