福田の数学〜慶應義塾大学薬学部2025第1問(5)〜複素数平面上の正n角形の頂点に関する性質 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(5)〜複素数平面上の正n角形の頂点に関する性質

問題文全文(内容文):

$\boxed{1}$

(5)$n$は$n\geqq 3$を満たす自然数とする。

複素数$z$を$\cos\dfrac{2\pi}{n}+i\sin \dfrac{2\pi}{n}$とおき、

複素数平面において$z^k (0\leqq k \leqq n-1)$が表す点を

$P_k$とする。

ただし、$k$は整数、$i$は虚数単位とする。

(i)$n$個の点$P_0,P_1,P_2,\cdots P_{n-1}$を

頂点とする正$n$角形の面積を$S_n$とする。

$S_n$を$n$の式で表すと$S_n=\boxed{シ}$であり、

$\displaystyle \lim_{n\to\infty}S_n$を求めると$\boxed{ス}$である。

(ii)$\displaystyle \sum_{k=1}^{n-1} z^k$を求めると$\boxed{ス}$である。

(iii)$n=7$とする。

三角形$P_1P_2P_4$の重心を$A(\alpha)$、

三角形$P_3P_5P_6$の重心を$B(\beta)$とおく。

複素数$\alpha,\beta$を求めると、

$\alpha=\boxed{ソ},\beta=\boxed{タ}$である。

$2025$年慶應義塾大学薬学部過去問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)$n$は$n\geqq 3$を満たす自然数とする。

複素数$z$を$\cos\dfrac{2\pi}{n}+i\sin \dfrac{2\pi}{n}$とおき、

複素数平面において$z^k (0\leqq k \leqq n-1)$が表す点を

$P_k$とする。

ただし、$k$は整数、$i$は虚数単位とする。

(i)$n$個の点$P_0,P_1,P_2,\cdots P_{n-1}$を

頂点とする正$n$角形の面積を$S_n$とする。

$S_n$を$n$の式で表すと$S_n=\boxed{シ}$であり、

$\displaystyle \lim_{n\to\infty}S_n$を求めると$\boxed{ス}$である。

(ii)$\displaystyle \sum_{k=1}^{n-1} z^k$を求めると$\boxed{ス}$である。

(iii)$n=7$とする。

三角形$P_1P_2P_4$の重心を$A(\alpha)$、

三角形$P_3P_5P_6$の重心を$B(\beta)$とおく。

複素数$\alpha,\beta$を求めると、

$\alpha=\boxed{ソ},\beta=\boxed{タ}$である。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.11

<関連動画>

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

札幌医科大 2024 複素数の方程式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ

2024札幌医科大過去問
この動画を見る 

早稲田大学 数列、複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第4問〜複素数平面上の点列と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
問題文全文(内容文):
複素数$\alpha=\frac{\sqrt3\ i}{1+\sqrt3\ i}$に対して、複素数$z_n$を
$z_n=8\alpha^{n-1}\ \ \ \ (n=1,\ 2,\ 3,\ ...)$
によって定める。ただしiは虚数単位とする。複素数平面において、原点をOとし、
$z_n$の表す点を$P_n$とする。このとき、以下の問いに答えよ。
(1)$\alpha$の絶対値|$\alpha$と変革$\arg\alpha$をそれぞれ求めよ。
ただし、$0 \leqq \arg\alpha \lt 2\pi$とする。
(2)$z_2,\ z_3$の実部と虚部をそれぞれ求めよ。
(3)$z_n$の極形式をnを用いて表せ。
(4)$O,\ P_n,\ P_{n+1}$を頂点とする三角形の面積$S_n$を$n$を用いて表せ。
(5)(4)で定めた$S_n$に対して、無限級数$\sum_{n=1}^{\infty}S_n$の和Sを求めよ。

2022立教大学理工学部過去問
この動画を見る 
PAGE TOP