福田の数学〜慶應義塾大学薬学部2025第1問(5)〜複素数平面上の正n角形の頂点に関する性質 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(5)〜複素数平面上の正n角形の頂点に関する性質

問題文全文(内容文):

$\boxed{1}$

(5)$n$は$n\geqq 3$を満たす自然数とする。

複素数$z$を$\cos\dfrac{2\pi}{n}+i\sin \dfrac{2\pi}{n}$とおき、

複素数平面において$z^k (0\leqq k \leqq n-1)$が表す点を

$P_k$とする。

ただし、$k$は整数、$i$は虚数単位とする。

(i)$n$個の点$P_0,P_1,P_2,\cdots P_{n-1}$を

頂点とする正$n$角形の面積を$S_n$とする。

$S_n$を$n$の式で表すと$S_n=\boxed{シ}$であり、

$\displaystyle \lim_{n\to\infty}S_n$を求めると$\boxed{ス}$である。

(ii)$\displaystyle \sum_{k=1}^{n-1} z^k$を求めると$\boxed{ス}$である。

(iii)$n=7$とする。

三角形$P_1P_2P_4$の重心を$A(\alpha)$、

三角形$P_3P_5P_6$の重心を$B(\beta)$とおく。

複素数$\alpha,\beta$を求めると、

$\alpha=\boxed{ソ},\beta=\boxed{タ}$である。

$2025$年慶應義塾大学薬学部過去問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)$n$は$n\geqq 3$を満たす自然数とする。

複素数$z$を$\cos\dfrac{2\pi}{n}+i\sin \dfrac{2\pi}{n}$とおき、

複素数平面において$z^k (0\leqq k \leqq n-1)$が表す点を

$P_k$とする。

ただし、$k$は整数、$i$は虚数単位とする。

(i)$n$個の点$P_0,P_1,P_2,\cdots P_{n-1}$を

頂点とする正$n$角形の面積を$S_n$とする。

$S_n$を$n$の式で表すと$S_n=\boxed{シ}$であり、

$\displaystyle \lim_{n\to\infty}S_n$を求めると$\boxed{ス}$である。

(ii)$\displaystyle \sum_{k=1}^{n-1} z^k$を求めると$\boxed{ス}$である。

(iii)$n=7$とする。

三角形$P_1P_2P_4$の重心を$A(\alpha)$、

三角形$P_3P_5P_6$の重心を$B(\beta)$とおく。

複素数$\alpha,\beta$を求めると、

$\alpha=\boxed{ソ},\beta=\boxed{タ}$である。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.11

<関連動画>

中学生の知識でオイラーの公式を理解しよう Vol 9

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 9
この動画を見る 

自治医科大学

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$

(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$

出典:2017年自治医科大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

福田のおもしろ数学256〜高次方程式と極形式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
方程式
\begin{equation*}
z^6+z^4+z^3+z^2+1=0
\end{equation*}
の解を極形式の形で表せ。
この動画を見る 

13東京都教員採用試験(数学:6番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
6⃣$argZ=\frac{4}{3} \pi$ , $arg(1-z)=\frac{\pi}{4}$
$arg \frac{z}{(1-z)^2}$ , |z|を求めよ。
この動画を見る 
PAGE TOP